Medium Voltage VFD topologies and applications

Guillermo Falquez P.E. MVCA Applications Engineer 5/25/2021

Agenda - VFD Components - Line side concerns - PFE converters - AFE converters - Load side concerns - MV VFD Topologies - PWM CSI - 2L VS - NPC - CHB

What are the components of a medium voltage

VFD?

What are the components of a MV VFD?

What are some of the line side concerns?

VFD line side concerns

Passive Front End Converters

Converter Passive Front End (PFE) – 6 - pulse rectifier

Powering Business Worldwide

© 2021 Eaton. All rights reserved.

Converter PFE – 18 - pulse series connected rectifier

Marginal IEEE 519 compliance depending on system impedance

Converter PFE – 24 - pulse series connected rectifier

Powering Business Worldwide

Converter PFE – 18 - pulse separate-type rectifier

- Used in Cascaded H-bride inverter topology
- Slightly better THD with marginally lower pf

Active Front End Converters

What are the components of a medium voltage VFD? – Converter Active Front End (AFE)

AFE Converter

- Not a topology but a type of converter circuit
- Diodes are replaced by transistors (active devices) to control low order harmonics
- Makes use of LCL passive filter to reduce high order input harmonics caused by switching frequency of transistors

"Friendly" AFE topologies

- Voltage Source
- Neutral Point Clamped (NPC) 3L, 5L
- Modular Multilevel Converter (M2C)
- Current Source
- LCI
- 2L-CSI

Advantages – Why AFE?

- •Dynamic braking or power regeneration
- Large fans
- Downhill conveyors
- Elevators
- Cranes
- Centrifuges
- •Wind tunnels
- •Low THD levels (<50th harmonic)
- •Excellent power factor control (i.e. active VAR compensation applications)

Disadvantages

- •LCL filter may cause resonance issues with electrical system i.e. generators, transformers, capacitor banks, etc.
- •Not adaptable to electrical system changes
- Higher cost
- Lower efficiency
- •Larger footprint due to filter
- •"Complex" controls

Powering Business Worldwide

What are some of the load side concerns?

VFD Motor side concerns

Converts constant DC to PWM waveform

• Affects the performance on the motor side

Output levels

• 2-3, 3-5, 4-7, 5-9, 9-17...

Application main concerns

- Do not damage the motor (standard and inverter duty)
 - dv/dt and wave reflections
 - Low common-mode voltage stress
 - LC resonance
 - Limited motor harmonics

MG-1 Motor voltage stress ratings

Where: V_{peak} is a single amplitude zero-to-peak line-to-line voltage.

Inverter topologies for MV VFDs

MV VFD Topologies

Current Source Inverter PWM-CSI

Current Source Inverters – PWM-CSI Topology

From High Power Converters and AC Drives – Bin Wu

CSI Topology

- Fist type of MV VFDs available in the market utilizing SCRs
- Output filter always necessary
- Available configurations
- "Transformer-less" LCL filter input
- ·Isolation transformer and 6, 12, or 18 pulse AFE rectifier

Advantages

- •Long input and output cables low dv/dt rise time
- Excellent power factor with isolation transformer + AFE SGCTs
- Low component count
- 4-quadrant operation

Disadvantages

- Filter must be evaluated if system impedance changes
- Design relies on upstream protection to interrupt faults downstream inverter
- ·Lower efficiency due to current switching
- ·Limited dynamic performance when compared to VSI
- •Large K ratings required to filter harmonics
- · Common mode problems with "transformer-less" design

Current Source Inverters – Common mode voltage

Powering Business Worldwide

Voltage Source Inverter Neutral Point Clamp

Voltage Source Inverters – 2 Level Topology

NPC Topology

- 2 level inverter foundation with:
 - Artificial neutral created to increase number of output steps
 - Clamping diodes used to "clamp" neutral voltage
 - Neutral can be grounded to mitigate common mode currents
 - 2 DC link capacitors dividing DC bus voltage
 - 3L-N- 0, +E, -E
 - 5L-L- -2E, -E, 0, +E, +2E

Voltage Source Inverters – Series Cell NPC Topology

Series Cell NPC

- 24 Pulse Isolation Transformer
- Per phase
 - 24-pulse rectifier
 - 3L NPC Inverter
- Increased number of levels
 - 5L L-N
 - 9L L-L
- No remote transformer option
- Output reactor usually provided as standard
- Not AFE "friendly"
 - Individual converters per phase
 - Isolation transformer must be integral to the VFD

Advantages

- · Great power density inverters
- · Improved output quality
- Less component count
 - 6.5kV or 3.3kV transistors
 - · Lower heat losses
 - Greater efficiency
- No common mode voltage/currents due to isolation transformer
- · Flexible footprint via remote transformer
- AFE friendly topology

Disadvantages

- No cell redundancy
- Output filtering may be required
 - Cable distance
 - Motor type

Voltage Source Inverter Cascaded H-Bridge

12-pulse separate diode rectifier CHB inverter

CHB

- Multiple units of low voltage singlephase H-bridge power cells connected in series
 - 6-pulse rectifier
 - 2 level H-bridge
- Isolation transformer with multiple secondary windings

2-level H-bridge power cell

18-pulse 7-level CHB inverter

- Voltage Outputs
 - 3E
 - 2E

• -1F

• -2E

• -3E

24-pulse 9-level CHB inverter

- Voltage Outputs
 4E
 - 3E
 - 2E
 - 1E
 - 0

• -3E • -4F

Cascade H-Bridge (Equal DC Voltage)				
Cells per phase*	Cells per VFD	Rectifier pulse count	L-N output levels	L-L output levels
1	3	6	3	5
2	6	12	5	9
3	9	18	7	13
4	12	24	9	17
5	15	30	11	21
6	18	36	13	25
7	21	42	15	29
8	24	48	17	33
9	27	54	19	37
10	30	60	21	41
11	33	66	23	45
12	36	72	25	49
13	39	78	27	53
14	42	84	29	57
15	45	90	31	61
16	48	96	33	65
17	51	102	35	69

*Numbers may be different depending on manufacturer

Advantages

- · Cell redundancy available
- Low input and output harmonics
- Low voltage steps => low dv/dt
- Output filter not required except for long cable distances

Disadvantages

- · Less power density when compared to NPC
- Electrolytic capacitor
- High component count
 - Higher losses
 - Lower efficiency
- Not AFE friendly topology
 - Individual converters per cell
- Expensive isolation transformer
- · Isolation transformer must be integral to the VFD

